Suppression of Machining Fluid Misting by Polymer Additives Charles W. Manke, Esin Gulari, and Joseph M. Smolinski Dept. Chemical Engineering and Materials Science Wayne State University Detroit, MI 48202 Support is gratefully acknowledged from: NSF DMI-9525105, Ford, General Motors, Daimler-Chrysler/UAW, USCAR. #### **Machining Fluids for Metalworking** Function: Cool and lubricate working surfaces, remove metal chips. Metalworking Processes: Milling, gun-drilling, grinding, etc. **Fluid Types:** Straight Oil *light mineral oils (~20 cp)* Water-Based oil-in-water emulsions Misting Problem: Machining fluids break up in high speed machining under impact, shearing, and centrifugal force. Droplets < 5 mm are easily entrained in air, leading to worker exposure via inhalation. ## Influence of Polymers on Atomization ## Particle Sizing and Size Distributions $$R = 1 - \exp\left[-\left(\frac{d}{X}\right)^{N}\right]$$ $$W = \frac{\partial R}{\partial d}$$ # Extensional Viscosity Measurements and its Relationship to Atomization #### Opposing Jet Rheometer $$Stress = \frac{Measured\ Force}{Nozzle\ Area}$$ $$Strain\ Rate \approx \frac{Flow\ Rate}{Nozzle\ Area \times \frac{1}{2}Gap}$$ $$h_{E} \approx \frac{Stress}{Strain\ Rate}$$ ## Oil Mist Suppress using Polyisobutylene in Plant Testing 12:30:00 13:30:00 0.000 11:30:00 ⇒70 ppm of PIB add to machining oil ⇒ 40% reduction in average mist levels ⇒67% reduction in peek mist levels ⇒24 hours plus service life ## **Use of High-M Polymers for Antimisting Treatment of Machining Fluids in Automotive Industry** #### **Straight Oils** Polymer: 20-50 ppm polyisobutylene ($M=1-2x10^6$) Replenishment schedule: daily-weekly Status: worldwide implementation by Ford, and others. #### **Water-based Fluids** Polymer: up to 500 ppm polyethylene oxide $(M-1-2x10^6)$ Replenishment schedule: daily Status: plant-tested but not widely implemented. Challenge: Improve economics of treatment for water-based fluids by reducing mechanical degradation and/or reducing treatment concentrations. Associative Chemistry: Polymer-surfactant and polymer-polymer interactions. #### Effect of PEO and Surfactant on Drop Size Distribution PEO (MW = 2,000,000) : 0.5 g/l Petroleum sulfonate:20 g/l #### **Effect of PEO and Surfactant on Solution Elasticity** PEO (MW = 2,000,000): 0.5 g/l Petroleum sulfonate: 20 g/l ## Plant Testing of Polyethylene Oxide as a Mist Suppressant at a Detroit Daimler-Chrysler Facility #### **Layout of Plant Test** - Aerosol measured by TSI DustTrak and RAM-1 units, at a grid resolution of 15 ft by 15 ft covering an area of 240 ft by 90 ft. - •Two 40,000 gallon soluble oil systems treated with 150 ppm of PEO added as a slurry. **Storage Area** #### Mist Suppression with PEO ## Plant Testing of Polyethylene Oxide as a Mist Suppressant at a Detroit Daimler-Chrysler Facility #### **Layout of Plant Test** - Aerosol measured by TSI DustTrak and RAM-1 units, at a grid resolution of 15 ft by 15 ft covering an area of 240 ft by 90 ft. - •Two 40,000 gallon soluble oil systems treated with 150 ppm of PEO added as a slurry. **Storage Area** #### Mist Suppression with PEO EFFECT OF PEO CONCENTRATION ON DROP SIZE #### **Conclusions** Polymer additives are very effective in reducing machining fluid mist. **Economic barriers remain for treatment of water-based fluids:** high treatment levels (up to 500 ppm) mechanical degradation of polymer (daily replenishment) higher cost of water-soluble polymers PEO-surfactant interactions greatly improve antimisting effectiveness in laboratory and plant tests - reduces treatment to 150 ppm. Further improvements are expected through optimization of polymersurfactant interactions and synthesis of "designer" antimisting systems.